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Synchronization in adaptive weighted networks
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In this paper, global synchronization in coupled oscillator networks is investigated. We propose an adaptive
weighted network and show that such a simple and quite general scheme is able to tip oscillator networks
towards collective synchronization. In comparison with the results based on linear stability analysis of un-
weighted networks, the proposed scheme improves the synchronizability of network dynamics, and is benefi-
cial to analyze the effect of network structure on synchronizability.
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I. INTRODUCTION

Recently, an interest highly focuses on dynamics in net-
works of coupled (chaotic) oscillators, particularly when in-
dividual oscillators behave in union. Such collective behav-
ior of networks, called collective synchronization, simulates
a remarkable spontaneous phenomenon of self-organizing
complex systems, which has been observed extensively in
nature, ranging from living oscillators to nonliving oscilla-
tors at every scale from the nucleus to the cosmos [1-4]. A
theoretic question of this subject is: How to design a cou-
pling scheme to generate the synchronous behavior, and how
to determine the stability of synchronous motion in regard to
the coupling strength? Another central question is: How does
connectivity topology in networks affect synchronizability?
Over the last years these questions have been intensively
investigated in both limit-cycle and chaotic oscillator net-
works.

Some effective approaches based on linear stability analy-
sis have been proposed to investigate the stability of collec-
tive synchronization in regard to the fixed coupling strength
in unweighted networks [5-10]. Particularly, in Refs. [7-10]
a master stability function based on the largest Lyapunov
exponent was given to calculate the linear stability of a so-
lution in the synchronous manifold. Some interesting results
were obtained with this method. For examples, collective
synchronization may be lost by increasing the coupling,
which is contrary to intuition; particular coupling schemes in
chaotic oscillator networks may have an upper limit on the
number of coupled oscillators due to short-wavelength bifur-
cation, over which synchronous state cannot be stable no
matter how the coupling strength is adjusted. Furthermore,
this idea was used to investigate how the network structure
(small-world and scale-free networks) affects synchroniz-
ability, and it was found that the heterogeneity of networks
would decrease synchronizability [11,12], which is opposite
to the nature of dynamics in small-world networks.

Note that in the methods based on eigenvalue analysis the
calculation of Lyapunov exponents is used to detect linear
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stability of synchronous state, so such synchronization is lo-
cally stable and applicable for the case that several attractors
coexist. However, when each individual oscillator has the
near-nonhyperbolicity, e.g., neuron model possessing simul-
taneously fast and slow variables, the approximate linearity
based on the variational equations is probably problematic to
deal with such nonlinear systems. In addition, for the com-
plex coupling networks or those networks with time-
dependent coupling, the calculations of eigenvalues of con-
nection matrix and Lyapunov exponents are difficult. To
avoid the linear stability analysis based on eigenvalues’ cal-
culation, the nonlinear stability of synchronous state (i.e., a
stronger global stability) should be considered. Global syn-
chronization implies that solutions from arbitrary initial val-
ues converge to the synchronous manifold, so the needed
scheme is much highly required and it is crucial to determine
the bound of coupling strength. Considering the spontaneity
of self-organizing complex systems, one will image naturally
that the needed coupling strength is chosen adaptively (not
artificially fixed as in the literature) in the course of achiev-
ing collective synchronization. Namely, the coupling maybe
is time dependent.

Therefore, based on the adaption idea proposed by the
authors in Ref. [13-16], here we give a simple adaptive cou-
pling to explore the collective synchronization in weighted
networks. Such adaptive weighted scheme shows that the
coupling strengths needed for global synchronization can be
attained through a simple adaptive law. Moreover, the pro-
posed scheme improves the synchronizability of network dy-
namics, e.g., the upper limit of the number of nodes, which
was found to constrain the synchronization of unweighted
networks, may be avoided. In addition, the proposed adap-
tive weighted networks are beneficial to analyze the effect of
network structure on synchronizability because it is not re-
quired to calculate additive parameters, e.g., eigenvalues of
connectivity matrix (i.e., Laplacian matrix).

II. SETUP OF ADAPTIVE WEIGHTED NETWORKS

In coincidence with most of the treatments in the litera-
ture, our analysis will be limited to a network of oscillators
that are all strictly identical. Suppose that the dynamical be-
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X=F(X), X=(x;,x,...,x,) € R", 1)

where F(X) is a differentiable nonlinear vector function. And
we assume that F(X) satisfies a very loose condition, i.e., the
uniform Lipschitz condition with constant [ defined in Refs.
[13-16]. We consider networks of such N nodes, dynamics
of which is governed by (mN)-dimensional equations:

N
X'=F(X)+ 2 K;; ® [HX) - H(X)], i=1.2,...,N,
j=1
(2)
where Ki,jz(k}’j,kij,...,kjf}) represent coupling strengths,

H:R"—R™ is an arbitrary function of each node’s vari-
ables that are used as coupling signals, and the symbol ®
is defined by (15%25 o> ) @ (V15 Y25 o5 Vm)
=(X1y1,X2Y2, .-+ X, Ym). For the convenience, we always set
K;;=0,i=1,2,...,N and consider symmetric coupling, i.e.,
K; ;=K;;. K; ;=0 implies no coupling between the ith and jth
nodes. Therefore, the choice of K=(K; ;) also gives the con-
nectivity topology of networks. For example, for the star
coupling with the 1th node as hub, the connectivity “matrix”
is

0 K, Kiz = Ky
K21 0 O O
K=l .7 : : . 3)
Ky, O o -+ 0

The nearest-neighbor diffusive coupling with periodic
boundary conditions (i.e., ring diffusive coupling) corre-
sponds to

O K1’2 O KI,N
K 0 K 0
k=| "0 TE : ()
KN,] 0 KN,N—] 0

Letting Ky =K, y=0 in (4), it corresponds to open-ended
diffusive coupling. Note that instead of a overall coupling
strength used in the literature (i.e., the unweighted net-
works), here coupling strengths depend on not only the cor-
responding two nodes (i.e., K;; depends on subscripts i and
J), also the components of the coupled pair (i.e., K;; is an m
vector). Speaking simply, this implies weighted networks.

To avoid the linear stability analysis and find suitable cou-
pling strengths for global synchronization, we let the cou-
pling strengths in (2) be time-dependent, i.e., K; ;=K ().
Furthermore, if K; ; # 0 (i.e., there is coupling between the ith
and jth nodes) we let K ;(r) vary adaptively according to the
update law

Kij=AHX)-HX)] @ [HX)-H(X)], (5

where y>0 is an arbitrary constant, called dissipation pa-
rameter. In general, we choose 0<y<1 to guarantee the
coupling weak. Note more generally one may let y be a

constant vector, y= yi,‘jz('y}’ o Vi)
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Systems (2) and (5) constitute adaptive weighted net-
works. Next our aim is to show the collective synchroniza-
tion will be achieved under such adaptive coupling. From the
geometrical viewpoint of dynamical systems, it is equivalent
to prove that the synchronous manifold M={X'=X?=---
=XM} is globally attractive. Note the hyperplane M is an
m-dimensional invariant manifold in the system consisting of
(2) and (5). Namely, arbitrary orbits starting from M stay in
M forever. Instead of the linear stability analysis of each
solution on this manifold, we use Lasalle invariance prin-
ciple to show the whole m-dimensional manifold M is glo-
bally attractive (i.e., nonlinearly stable). For more clarity, we
let H be an identity map which represents vector coupling,
and all couplings be unidirectional. Now we use the star
coupling connectivity (3) as an example to show the nonlin-
ear stability of synchronous state. In this case, the system
consisting of (2) and (5) is explicitly rewritten as

X'=F(X"), X'=F(X)+K,;® X' -X), (6a)

K =yX'-X)® (X'-X), i=23,....N. (6b)

To prove m-dimensional manifold M is globally attractive in
m(2N—-1)-dimensional system (6), we introduce the scalar
function

N m N m
S0 SIS0 )

1
23550 i=2 j=1

where L is a suitable constant. Then applying the method
similar to that in Refs. [13-16] and Lasalle invariance prin-
ciple, one may prove directly the conclusion: The bounded
orbits starting from any initial values of system (6) converge
to the synchronous manifold M while K;;— K, as t— o,
where K, is a constant vector depending on the initial
values.

The result implies that the coupling strengths K;; are
adaptively tuned to achieve collective synchronization, and
dependent on the initial values of networks dynamics. In
addition, one may set the initial coupling strengths suffi-
ciently small, say K;(0)=0, to guarantee the added control
U=K;, ®(X'-X') small at the beginning (although the syn-
chronization error is perhaps big at the time). In the other
side, while the coupling strengths K ; increase according to
the adaptive law (5) the synchronization error (X'—X’) will
be smaller and smaller, so the control U keeps small.
Namely, the present scheme may keep the added control
small as possible in the course of achieving synchronization,
which is significant in practice. We also note when the oscil-
lators of a network are limit-cycle or chaotic, a particular
choice of component coupling not vector coupling is ad-
equate. In this case, the function H will be adjusted. For
example, H(x)=(x,,0,...,0) corresponds to only couple the
first variable of nodes, and meanwhile the coupling strength
K;; is naturally in the form of (kil,j,O,...,O). For typical
three-dimensional chaotic systems, such as Lorenz, Rossler,
and Chua systems, it is found by numerical simulations that
one single component coupling is sufficient to achieve col-
lective synchronization in such adaptive weighted networks.
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We would point out that the related rigorous proof seems to
be impossible (including for other networks structures).

ITII. SYNCHRONIZATION IN X-COUPLING ROSSLER
OSCILLATOR NETWORKS

To compare with those results based on the linear stability
analysis of unweighted networks, we use the standard
Rossler system

X=-y-z, y=x+ay, i=b+(x-o)z (8)

as an illustrative example. It has been shown in the literature
that x component coupling between Rossler oscillators gives
rise to some interesting phenomena such as short-wavelength
bifurcation, so here we also choose x coupling although y
component coupling is more perfect for global synchroniza-
tion of Rossler oscillator networks.

Applying the adaptive scheme proposed above, we con-
sider star networks of N Rossler oscillators with x compo-
nent coupling. The network dynamics is governed by

X1==y1—2, Yi=xi+ay;, Z1=b+(x;-0)z,
Yi==yi— itk —x), Yi=x;+ay, Zi=b+(x;-0)z;,
(9a)
k=0.01(x;—x)% i=2,3,...,N, (9b)

where we have set the dissipation parameter y=0.01. Con-
sidering the nearest-neighbor coupling networks with peri-
odic boundary conditions (i.e., ring diffusive coupling), the
corresponding model is

K== Y=zt ko (s = xy),

yi=xi+ay, Zi=b+(x;—c)z, (10a)

ki,i—l = 0.01()6,»_1 —Xi)z, = 1,2, v ,N, Xo = Xpn-
(10b)

The dynamical model of the open-ended diffusive coupling
networks is

Y1==yi—2, N =xi+ay;, 41=b+(x;-0c)z,

Yi=Xi+ay,z;=b+(x;— )z,
(11a)

Xi==yi— i+ ki (i - x),

ki1 =0.01(x,, —x)% i=2,...,N. (11b)

Here, we only give the numerical results of chaotic
Rossler oscillator networks with parameters a=b=0.2 and
c="7. To measure the synchronous behavior, we introduce the
quantity

N

E=2 (xi—x |+ |yi—yi|+|z-2
=2

), (12)
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which is referred to absolute synchronization error. In the
meantime, we introduce the average coupling strength

Klzﬁg K, (13)
L
K, = sz ki1, (14)
and
X
K3=mz ki1 (15)

respectively, to investigate the variation of the coupling
strengths in (9), (10), and (11). In all three numerical experi-
ments, the initial values may be chosen at random, and
meanwhile the initial coupling strengths are set as zero. Nu-
merical results in Figs. 1-3 show, respectively, the adaptive
synchronization in chaotic Rossler oscillator networks in (9),
(10), and (11) is achieved, where the number of nodes N
=40, 8, and 40, respectively.

IV. DISCUSSION AND CONCLUSION

In comparison with the results based on linear stability
analysis of unweighted networks, an interesting phenomenon
is found. For star, ring diffusive and open-ended diffusive x
couplings of N chaotic Rossler oscillators, the upper limit of
nodes, N,,«, which was given in Ref. [7-10], is 35, 19, and
9, respectively. It implies that the network dynamics with
over these numbers of nodes is impossible to synchronize no
matter how the coupling strength is tuned. It is well known
that the short-wavelength bifurcation results in the existence
of the upper limit N, in the local linear stability analysis.
Actually, a similar phenomenon also arises in the case of
global synchronization [17,18], e.g., due to the so-called
equilibria disappearance bifurcations the global synchroniza-
tion of x-coupling Rdssler oscillators cannot be achieved
even for the largest coupling strength, where coupling is
fixed. However, as the numerical results above show, this
limit size may be broken through in the present adaptive
weighted networks. It shows that the proposed simple
scheme improves the synchronizability of network dynamics.
Here a crucial idea is that the coupling strengths vary adap-
tively according to the update law (5), which is different
from the case of a fixed coupling strength in nature. Also
note that the present networks are weighted, but the previous
analysis were on unweighted networks. Just as it was re-
cently shown that some weighted networks can enhance the
synchronization of the system [19], this difference maybe
contributes to the present improvement on the synchroniz-
ability of network dynamics. In addition, the direct coupling
(i.e., unidirection) in these examples may be one of factors
resulting in such improvement. It remains to investigate fur-
ther how the present adaptive weighted coupling improves
the synchronizability of network dynamics.

The proposed scheme is also quite convenient to analyze
numerically the effect of network structure on synchroniz-
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ability. Simply we may measure the effect of network struc-
ture by numerically checking the following two quantities:
the converged average coupling strength defined as (13)—(15)
and the transient (or convergence) time, i.e., the needed time
for reaching synchronization. The smaller quantities imply
that the corresponding network structure possesses the stron-
ger synchronizability. We compare the effect of three net-
work structures (i.e., star coupling, ring diffusive coupling,
and open-ended diffusive coupling) on synchronizability by
choice of the same initial values and number of nodes. We
find the star coupling network is most easy to synchronize
(i.e., the transient time is shortest and the converged average

coupling strength smallest as well), and while the ring diffu-
sive coupling is most difficult. The similar results are found
in the other coupled oscillator networks. In the other side, it
is well known that among these networks the star coupling is
more “small-world” and more heterogeneous. Therefore the
numerical results are accordant with dynamics of small-
world networks, i.e., characteristic of small-world strength-
ens the synchronizability. And mean while it results in a
difference with the findings based on the linear stability
analysis of unweighted networks [11,12], where it was found
that networks with a homogeneous distribution are more syn-
chronizable than heterogeneous ones. However, this problem
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o i WETTE S ! L merically adaptive synchroniza-
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(b) and variation of average coupling
strength K, defined in (14), re-
1L | spectively, where N=8.
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remains to investigate further: How does random short cut in
semirandom complex networks [20,21], such as small-world
and scale-free networks, affect synchronization in the present
adaptive weighted networks?

In conclusion, the proposed adaptive weighted coupling
gives a new insight to explore dynamics of coupled oscillator
networks. In comparison with those schemes with fixed and
unweighted coupling, this quite general scheme improves the
synchronizability of network dynamics. And meanwhile,
since it is very simple and analytical (without additional nu-
merical calculations, e.g., matrix eigenvalues and Lyapunov
exponents) the proposed scheme may be directly used to
investigate the synchronization of the more complicated net-
works (e.g., high-dimensional structure, and even semiran-
dom complex networks), and to analyze numerically the ef-

250 300

fect of network structure on synchronizability. In addition,
theoretically the viewpoint of adaption is certainly significant
with collective synchronization in biological systems, e.g.,
neuron synchronization [22], although presently we have no
method to confirm whether just the adaption law as (5) un-
derlies the life rhythm.
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